Re: Divisibility  
Hi TG how to solve this problem?? 10000! = (100!)^{K} Ã— P, where P and K are integers. What can be the maximum value of K? 
Re: Divisibility  
hi Tripti.. 17017 U have to make groups frm right 017 and 17 diff is 0 and hence divisible by 7... 
Re: Divisibility  
hi TG please explain the logic 
Re: Divisibility  
hi mayur can u pls elobrate ur ans 
Re: Divisibility  
Thanks TG 
Re: Divisibility  
Hi Vamsi, I think your approch is right.Even I thought of teh same approach to solve it...

Re: Divisibility  
i didn't understand the soln to d prob 10000!=(100!)^k*p can anyone explain it to me. 
Re: Divisibility  
Hi Shiva, Have already discussed this before: http://totalgadha.com/mod/forum/discuss.php?d=84
Total Gadha 
Re: Divisibility Rule for 7, 11, and 13  
1, 414 > 414  1 = 413 (divisible by 7) 1, 313 > 313  1 = 312 (divisible by 13) 
Re: Divisibility  
hi biswajit.we have to find out the least value of n and the least value will be 22. as 1089=(3^2)*(11^2).so n in n! should be 22 
Re: Divisibility  
hi deepak can you explain how 8 reminder is coming for 34^333 in question 43^444+34^333 Thanks 
Re: Divisibility  
hi Satyam can u eloborate it more, i didnt get it i know this concept the power m in n! is calculated by [n/a]+[n/a^{2}] and so on where a is highesst prime of m.

Re: Divisibility  
Ques 1. 75 is the answer. put n see approach 
Re: Divisibility  
Hello TG/colleagues, could you please explain how to find out that this no. is perfect sq. ex. AB36 is perfect sq. or not How to solve thsi type of questions. Thanks 
Re: Divisibility  
Hello TG sir/guys could anyone please explain how to find out whether a number is perfect sq. or not? 
Re: Divisibility  
i didnt get this can u please explain the sum in mch simpler way please 
Re: Divisibility  
find the number of integer solution to the equation 1/x + 1/y = 1/48 
Re: Divisibility  
Hi All, Plz explain how to solve this question(From your quiz) All possible pairs are formed from the divisors of 21600. How many such pairs have HCF of 45? 
Re: Divisibility  
Hi Abhishek Refer to digitsum property of perfect squares. For article  click here. Kamal Lohia 
Re: Divisibility  
Hi I didnt understand how 2^444 became (91)^148 nd similarly (91) ^111 could you please elaborate it for me....Thnx in advance 
Re: Divisibility  
2^444 = (2^3)^148 = 8^148 = (91)^148 Hope this helped. Regards Ankit Gaur (TathaGat) 
Re: Divisibility  
Can someone please explain what is meant by 888â€¦888A999â€¦999 ? I mean, what does this symbol â€¦ stand for in this number ? 
Re: Divisibility  
Thank you sir for the timely reply 
Re: Divisibility  
Sir, Would the team plan & post the preparation study plan for CAT'14 as TG sir did earlier in the following link ? http://totalgadha.com/mod/forum/discuss.php?d=2619&mode=1 I have even requested TG sir the same question as now for CAT'14 we do have to consider the past 5 years (2009 onwards) question papers. Awaiting your reply. Regards 